If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-6x-48=0
a = 15; b = -6; c = -48;
Δ = b2-4ac
Δ = -62-4·15·(-48)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-54}{2*15}=\frac{-48}{30} =-1+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+54}{2*15}=\frac{60}{30} =2 $
| 35-2y=26 | | X=1/2(7x-8) | | 4y=3â | | 4x=1=-31 | | 18x^2-45x=0 | | 9x+99=2x | | 3/x-9=15 | | 3x/7+(x-3)X=10 | | 4.8d=2,4 | | 4.8d=3.4 | | (-2y-18)/20=0 | | 3(2.35)^x=13x+194 | | 120=x-0.9x | | 4x75=x | | 120=x-0.09x | | 4m^2+25m=0 | | 300x=24^2 | | 6x-4+5x+5=-1 | | x2+6x=1 | | 20x-15x-(6x+13)=9x+37-(5x-5) | | 18=3(9f-13)= | | (x/2)+18=27 | | (x/2)+6=12 | | 1-2p=-9 | | 3^y^2+2y=0 | | -12x^2+10x-11=-14 | | (x^2)-70=291 | | 3x=17=5x-3 | | 6x+5=4x-45 | | (x÷2)+17=(5x÷8)+24-x | | (X÷2)+17=((5x÷8)+24-x) | | 5x+60=185 |